Structure Prediction by Hybrid Approach
This is a cost effective approach for determining the protein structure. The computational prediction methods, such as initiating fragment assembly, advanced fold recognition, composite approaches, and molecular docking are regularly applied in recent times to expand our understanding of protein structures. Nevertheless, predicted structures are not given the same credits as their experimental counterparts. Hybrid approach is a channel to overcome these disadvantages, by incorporating limited experimental measurements, reliable structures can be computed and unlikely predictions are eliminated. The current researches are showing great interest in this method of approach.
- Hybrid of experimental methods
- Hybrid of computational methods
- Hybrid approaches in complementing high-resolution structural biology
- Determining protein complex structures
- Bottom-up integration of atomic detail crystallography
- NMR structures
Related Conference of Structure Prediction by Hybrid Approach
Structure Prediction by Hybrid Approach Conference Speakers
Recommended Sessions
- Structure Prediction by Hybrid Approach
- Computational Approaches in Structural Biology
- Determination of 3D structures
- Frontiers in Structural Biology
- Molecular Dynamics
- Molecular Modelling
- Recent Advancements in Structural Biology
- Sequence Analysis
- Structural Biology
- Structural Biology Complexity Arenas
- Structural Biology Databases
- Structural Biology in Cancer Research
- Structural Biology in Cell Signalling
- Structural Biology in Drug Design
- Structural Enzymology
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- Biochemistry - Glycobiology 2025 (Germany)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Evolution of Glycan Diversity - Glycobiology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene regulation and Cell Signalling - Structural Biology 2025 (Germany)
- Genomics and Metabolomics - Glycobiology 2025 (Germany)
- Glycans in Diseases and Therapeutics - Glycobiology 2025 (Germany)
- Glycans in Drug Design - Glycobiology 2025 (Germany)
- Glycan’s - Glycobiology 2025 (Germany)
- Glycobiology - Glycobiology 2025 (Germany)
- Glycochemistry - Glycobiology 2025 (Germany)
- Glycoimmunology - Glycobiology 2025 (Germany)
- Glycoinformatics - Glycobiology 2025 (Germany)
- Glycolipids and Glycopeptides - Glycobiology 2025 (Germany)
- Glyconeurobiology - Glycobiology 2025 (Germany)
- Glycopathology - Glycobiology 2025 (Germany)
- Glycosience - Glycobiology 2025 (Germany)
- Hybrid approaches in Structure prediction - Structural Biology 2025 (Germany)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular biology techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteoglycan and Sialic acid - Glycobiology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Recent Advances in Glycobiology - Glycobiology 2025 (Germany)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Synthesis and Biological Role of Glycans - Glycobiology 2025 (Germany)